

Application of High-Order Discontinuous Galerkin Method to LES/DES Test Cases Using Computers with High Number of Cores

I. Bosnyakov^{1,2}, S. Mikhaylov^{1,2}, V. Podaruev^{1,2}, A. Troshin^{1,2}, V. Vlasenko^{1,2}, <u>A. Wolkov^{1,2}</u>

¹ Central Aerohydrodynamic Institute (TsAGI), Russia
 ² Moscow Institute of Physics and Technology (MIPT), Russia

Outline

- Introduction
- Discontinuous Galerkin and Finite Volume methods
- Preliminary tests
 - Flow over cylinder
 - Evolution of 2D vortex
- Base tests
 - Taylor–Green vortex
 - Periodic hill flow
- Nozzle test case (first results)
- Conclusions

Introduction

<u>Towards Industrial LES/DNS in Aeronautics –</u> Paving the Way for Future Accurate CFD

- Objective: Development and testing of TsAGI code based on the high-order Discontinuous Galerkin Method (DG) for turbulent flow computations (aerodynamics, aeroacoustics)
- In addition, comparison with the Finite Volume Methods (FV TsAGI's code) is presented

Finite Volume Method (implementation of TsAGI)

- Implementation of WENO is partial:
 - One-dimensional reconstruction
 - One quadrature point on the side of the cell
 - Central difference scheme for viscous terms

- In the following tests:
 - slope limiters are switched off (linear weights, no MP)
 - Roe Riemann solver is employed:

$$\begin{aligned} \mathbf{F}_{i+1/2} &= \frac{1}{2} [\mathbf{F}(\mathbf{Q}_L) + \mathbf{F}(\mathbf{Q}_R)] - \frac{1}{2} \alpha (A^+ - A^-) (\mathbf{Q}_R - \mathbf{Q}_L); \\ \alpha &= 1 \to \text{upwind scheme}, \\ \alpha &= 0 \to \text{central scheme} \end{aligned}$$

Runge–Kutta, TVD3

*) Zhang R., Zhang M., Shu Ch. W. On the order of accuracy and numerical performance of two classes of finite volume WENO schemes // Communications in Computational Physics 9 (2011), No 3, pp. 807–827

Discontinuous Galerkin Method (1)

The system of equations and solution expansion:

$$\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathbf{F}(\mathbf{U}, \mathbf{G}) = 0 \qquad \mathbf{U}(\mathbf{x}, t) = \sum_{j=1}^{K_f} \mathbf{u}_j(t) \boldsymbol{\varphi}_j(\mathbf{x})$$

We multiply it by φ_i and integrate over the volume of cell Ω :

$$\int_{\Omega} \left(\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathbf{F} \right) \boldsymbol{\varphi}_i d\Omega = 0, \qquad i = 1, \dots, K_f$$

Substituting the expansion of U and taking into account the orthonormality of basis functions,

$$\int_{\Omega} \varphi_i \varphi_j d\Omega = \delta_{ij}$$

We arrive at the equation system for expansion coefficients u_i :

$$\left| \frac{d\mathbf{u}_i}{dt} + \oint_{\Sigma} \mathbf{\hat{F}} \cdot \mathbf{n} \, \varphi_i \, d\Sigma = \int_{\Omega} \mathbf{F} \cdot \nabla \varphi_i \, d\Omega \right|$$

Discontinuous Galerkin Method (2)

The resulting system of equations:

$$\frac{d\mathbf{u}_{i}}{dt} + \oint_{\Sigma} \mathbf{\hat{F}} \cdot \mathbf{n} \, \boldsymbol{\varphi}_{i} \, d\Sigma = \int_{\Omega} \mathbf{F} \cdot \nabla \boldsymbol{\varphi}_{i} \, d\Omega$$

Roe Riemann solver for inviscid flux

Bassi-Rebay 2 method for viscous flux

- $\{ \boldsymbol{\varphi}_{j}(\mathbf{x}) \}$ is full orthonormal polynomial set up to order K=1, 2, 3, 4, 5
- integration is performed using the Gauss formula with tensor product of 1D Gauss—Legendre quadratures
- second order curvilinear meshes are used
- Runge–Kutta, SSP5

Elementary hexahedrons and their mappings

b): "quadratic", 20 points

$$x_0 = \frac{\int\limits_{\Omega} x d\Omega}{\int\limits_{\Omega} d\Omega}, \quad y_0 = \frac{\int\limits_{\Omega} y d\Omega}{\int\limits_{\Omega} d\Omega}, \quad z_0 = \frac{\int\limits_{\Omega} z d\Omega}{\int\limits_{\Omega} d\Omega}$$

Barycenter coordinates:
$$x_0 = \frac{\int\limits_{\Omega} xd\Omega}{\int\limits_{\Omega} d\Omega}, \quad y_0 = \frac{\int\limits_{\Omega} yd\Omega}{\int\limits_{\Omega} d\Omega}, \quad z_0 = \frac{\int\limits_{\Omega} zd\Omega}{\int\limits_{\Omega} d\Omega}$$

$$\mathbf{I} = \begin{bmatrix} \int\limits_{\Omega} (\tilde{y}^2 + \tilde{z}^2)d\Omega & -\int\limits_{\Omega} \tilde{x}\tilde{y}\,d\Omega & -\int\limits_{\Omega} \tilde{x}\tilde{z}\,d\Omega \\ -\int\limits_{\Omega} \tilde{x}\tilde{y}\,d\Omega & \int\limits_{\Omega} (\tilde{x}^2 + \tilde{z}^2)d\Omega & -\int\limits_{\Omega} \tilde{y}\tilde{z}\,d\Omega \\ -\int\limits_{\Omega} \tilde{x}\tilde{z}\,d\Omega & -\int\limits_{\Omega} \tilde{y}\tilde{z}\,d\Omega & \int\limits_{\Omega} (\tilde{x}^2 + \tilde{y}^2)d\Omega \end{bmatrix}$$
 symmetry a positive definition of the properties
$$\tilde{x} = x - x_0$$

$$\tilde{y} = y - y_0$$

$$\tilde{z} = z - z_0$$

symmetry and positive definiteness

$$\tilde{x} = x - x_0$$

$$\tilde{y} = y - y_0$$

$$\tilde{z} = z - z_0$$

Unit and mutually orthogonal eigenvectors of inertia tensor I is: $e_1 e_2 e_3$

$$\begin{bmatrix} x_{\Omega} \\ y_{\Omega} \\ z_{\Omega} \end{bmatrix} = \begin{bmatrix} e_{11} & e_{12} & e_{13} \\ e_{21} & e_{22} & e_{23} \\ e_{31} & e_{32} & e_{33} \end{bmatrix} \begin{bmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \end{bmatrix}$$

Basis functions: $\psi_j(\mathbf{x}_{\Omega}) = s_j^{-1} x_{\Omega}^{\alpha_j} y_{\Omega}^{\beta_j} z_{\Omega}^{\gamma_j}, \quad \alpha_j, \beta_j, \gamma_j \in \mathbf{Z}_+, \quad 0 \le \alpha_j + \beta_j + \gamma_j \le K.$

$$s_{j} = \sqrt{\int_{\Omega} \left(x_{\Omega}^{\alpha_{j}} y_{\Omega}^{\beta_{j}} z_{\Omega}^{\gamma_{j}} \right)^{2} d\Omega} \qquad \int_{\Omega} \psi_{j}^{2}(\mathbf{x}_{\Omega}) d\Omega = 1$$

- Introduction
- Discontinuous Galerkin and Finite Volume methods
- Preliminary tests
 - Flow over cylinder
 - Evolution of 2D vortex
- Base tests
 - Taylor–Green vortex
 - Periodic hill flow
- Nozzle test case (first results)
- Conclusions

Flow over cylinder: computational mesh and flow parameters

- A series of refined meshes with dimensions from 16 x 4 x 1 to 128 x 32 x 1 cells
- $R_{\text{cylinder}} = 0.5$, $R_{\text{outer}} = 20$, $\Delta z = 0.1$
- Cylinder surface is «slip wall», side planes are «symmetry»
- Freestream values are imposed at the outer boundary
- Freestream Mach number $M_{\infty} \approx 0.15$

Flow over cylinder: total pressure field

128 x 32 x 1 mesh

FV, central scheme

polynomial order
↓
DG K = 1

FV, WENO 5

DG K = 3 on a curved mesh

Flow over cylinder: entropy error, L2 norm

$$e_{entropy} = \left(\frac{p}{p_{\infty}}\right) / \left(\frac{\rho}{\rho_{\infty}}\right)^{\kappa} - 1, \qquad Order = 2 \frac{\log(e_{i-1} / e_i)}{\log(NDOF_i / NDOF_{i-1})}.$$

NDOF = (Number of cells) x (Number of basis functions)

- With FV, error 10⁻¹⁰ can be achieved on a mesh of size 10¹⁰ DOFs
- DG requires only 10⁵ DOFs for the same accuracy

- Introduction
- Discontinuous Galerkin and Finite Volume methods
- Preliminary tests
 - Flow over cylinder
 - Evolution of 2D vortex
- Base tests
 - Taylor–Green vortex
 - Periodic hill flow
- Nozzle test case (first results)
- Conclusions

Evolution of 2D vortex:

$$u = 1 - \frac{\varepsilon}{2\pi} e^{\frac{1}{2}(1-r^2)} y, \quad v = 1 - \frac{\varepsilon}{2\pi} e^{\frac{1}{2}(1-r^2)} x,$$

$$T = 1 - \frac{(\gamma - 1)\varepsilon^2}{8\gamma\pi^2} e^{(1-r^2)}, \quad \frac{p}{\rho^{\gamma}} = 1,$$
where $r^2 = x^2 + y^2, \quad \varepsilon = 5$

Evolution of 2D vortex: L0 error

- With FV, error 10⁻⁸ can be achieved on a mesh of size 10¹⁰ DOFs
- DG requires only 10⁵ DOFs for the same accuracy

- Introduction
- Discontinuous Galerkin and Finite Volume methods
- Preliminary tests
 - Flow over cylinder
 - Evolution of 2D vortex
- Base tests
 - Taylor–Green vortex
 - Periodic hill flow
- Nozzle test case (first results)
- Conclusions

Taylor-Green Vortex test case

$$u = V_0 \sin\left(\frac{x}{L}\right) \cos\left(\frac{y}{L}\right) \cos\left(\frac{z}{L}\right) ,$$

$$v = -V_0 \cos\left(\frac{x}{L}\right) \sin\left(\frac{y}{L}\right) \cos\left(\frac{z}{L}\right) ,$$

$$w = 0 ,$$

$$p = p_0 + \frac{\rho_0 V_0^2}{16} \left(\cos\left(\frac{2x}{L}\right) + \cos\left(\frac{2y}{L}\right)\right) \left(\cos\left(\frac{2z}{L}\right) + 2\right)$$

Pressure isosurfaces, Re = 1600

Taylor–Green Vortex: DG method accuracy, 643 mesh

Turbulent kinetic energy

$$E_k = \frac{1}{\rho_0 \Omega} \int\limits_{\Omega} \rho \frac{v \cdot v}{2} d\Omega$$

Enstrophy

$$\epsilon = \frac{1}{\rho_0 \Omega} \int\limits_{\Omega} \rho \frac{\omega \cdot \omega}{2} d\Omega$$

Spectral method reference data: W.M. van Rees, A. Leonard, D.I.Pullin, P. Koumoutsakos. A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds number // J. Comput. Phys. 230 (2011), pp. 2794–2805

Taylor-Green Vortex: convergence and time requirements

- NDOF = number of degrees of freedom
- t_{comp} = computing time for each calculation (scaled to 512 core cluster)
- error = enstrophy maximum difference obtained in the calculation and in the reference solution

FV schemes

	64 ³	96 ³	128 ³	192 ³	256 ³	384 ³	512 ³
central			2.1 x 10 ⁶ 0.36 h 68%				
WENO5			2.1 x 10 ⁶ 0.49 h 45%				
	2.6 x 10 ⁵ 0.03 h 63%	8.8 x 10 ⁵ 0.13 h 50%		7.1 x 10 ⁶ 2.3 h 23%	1.7 x 10 ⁷ 9.6 h 16%	5.7 x 10 ⁷ 39 h 8.0%	1.3 x 10 ⁸ 153 h 4.7%

Up to 4096 cores were used for DG computations

DG schemes

	64 ³	96 ³	128 ³
K = 1	1.0 x 10 ⁶	3.5 x 10 ⁶	8.4 x 10 ⁶
	0.23 h	1.0 h	3.7 h
	60%	45%	37%
K = 2	2.6 x 10 ⁶	8.9 x 10 ⁶	2.1 x 10 ⁷
	1.8 h	9.1 h	32 h
	25%	13%	6.9%
K = 3	5.2 x 10 ⁶	1.8 x 10 ⁷	4.2 x 10 ⁷
	10 h	52 h	159 h
	10%	4.2%	2.2%
K = 4	9.2 x 10 ⁶	3.1 x 10 ⁷	7.3 x 10 ⁷
	39 h	198 h	623 h
	5.0%	1.7%	0.89%
K = 5	1.5 x 10 ⁷ 136 h 2.2%		

Taylor-Green Vortex: enstrophy peak evaluation

$$\epsilon = \frac{1}{\rho_0 \Omega} \int\limits_{\Omega} \rho \frac{\omega \cdot \omega}{2} d\Omega$$

After K>2 increase in the order of the scheme and increase in the computational grid size have virtually equal effect on enstrophy error level

Taylor-Green Vortex: MPI scalability

- $max maximum possible acceleration (max = <math>N_{cores}$)
- opt acceleration 1.8 times for every doubling of CPU cores

Increase in the number of cores (> 4,000) leads to reduction in scalability

MPI

Taylor-Green Vortex: OpenMP scalability

MPI - Separated memory for each core and a big data exchanges; OpenMP - Shared memory for all cores of the computer node;

TsAGI cluster: 32 CPU cores on each computer node -> 8 CPU cores can be joint into one 8-thread forecast:

MPI + OpenMP approach is promising with further increase of core number

- Introduction
- Discontinuous Galerkin and Finite Volume methods
- Preliminary tests
 - Flow over cylinder
 - Evolution of 2D vortex
- Base tests
 - Taylor—Green vortex
 - Periodic hill flow
- Nozzle test case (first results)
- Conclusions

Periodic hill flow

An ERCOFTAC QNET CFD UFR 3-30 test case

- streamwise and spanwise periodic flow
- forcing term dp/dx is imposed to maintain the mass flow rate
- Reynolds number Re = 10595, Mach number M ≈ 0.1
- uniform initial flowfield, initial state is "forgotten"
- Implicit Large Eddy Simulation (ILES) based on DG K = 1, 2, 3

Periodic hill flow: computational mesh and averaging

relatively coarse 32 x 16 x 16 mesh has been used

Averaging method

- The following data are collected:
 - Average velocity, pressure, density fields $U, V, W, P, \overline{\rho}$
 - Correlations (at the moment, in cell centers only $\overline{u'^2} = \overline{(u-U)^2}$, $\overline{v'^2}$, $\overline{u'v'}$, $\overline{u'v'}$, $\overline{u'w'}$, $\overline{v'w'}$
- Averaging is done over time (for at least 15 t_c) and over span (z axis direction)

Reference solution: NDOF = 13,100,000;

DG solution: K=1 - NDOF=32*16*16*4=32,768

K=2 81,920

K=3 163,840

Periodic hill flow: mean velocity profiles

• Reference LES data: M. Breuer, N. Peller, Ch. Rapp, M. Manhart, Comput. Fluids 2009

Periodic hill flow: shear stress profiles

Reference LES data: M. Breuer, N. Peller, Ch. Rapp, M. Manhart, Comput. Fluids 2009

- Introduction
- Discontinuous Galerkin and Finite Volume methods
- Preliminary tests
 - Flow over cylinder
 - Evolution of 2D vortex
- Base tests
 - Taylor–Green vortex
 - Periodic hill flow (first results)

- Nozzle test case (first results)
- Conclusions

Detached-eddy Simulation DDES

P.R. Spalart, S. Deck, M.L. Shur, K.D. Squires, M.Kh. Strelets, A. Travin. A new version of detached-eddy simulation, resistant to ambiguous grid densities // Theor. Comput. Fluid Dyn. **20**, pp. 181–195, 2006

A modified SA equation of the turbulence model is solved :

$$\frac{\partial \widetilde{v}}{\partial t} + u_j \frac{\partial \widetilde{v}}{\partial x_i} - \frac{\partial}{\partial x_j} \left(\frac{v + \widetilde{v}}{\Pr_t^{\widetilde{v}}} \frac{\partial \widetilde{v}}{\partial x_i} \right) = P_{\widetilde{v}}(\dots, \left[\widetilde{d} \right]) - D_{\widetilde{v}}(\dots, \left[\widetilde{d} \right])$$

• The length scale varies smoothly from d_{wall} (RANS) to Δ_{cell} (LES):

$$\tilde{d} = d_{\text{wall}} - f_d \max(0, d_{\text{wall}} - C_{\text{DES}} \Delta_{\text{cell}})$$

$$f_d = 1 - \operatorname{th} (8r_d)^3$$

$$r_d = \frac{v + v_t}{\sqrt{\frac{\partial u_i}{\partial x_j} \frac{\partial u_i}{\partial x_j}} K^2 d_{\text{wall}}^2}$$

$$\Delta = \max(h_x, h_y, h_z)$$

$$C_{\text{DES}} = 0.65, \text{ K} = 0.41$$

"Noise suppressing nozzle" test case TC-P4: Dual-stream jet nozzle

- dual-stream coaxial nozzle
- cental body
- cold air flow
- pressure difference between the contours is generated by the grids

front view

back view

Flow regime and visualization

Inner contour:

- subsonic jet, M = 0.85 at nozzle exit
- nozzle pressure ratio NPR₁ = 1.72
- diameter-based Reynolds number $Re_{1D} = 0.96 \cdot 10^6$

Outer contour:

- supersonic underexpaneded jet, M=1 at nozzle exit
- nozzle pressure ratio NPR₂ = 2.25
- diameter-based Reynolds number Re_{2D} = 2.872·10⁶

Shlieren visualization, 0.01 s exposure

Shlieren visualization, $3 \cdot 10^{-6}$ s exposure

Laser knife visualization

Pitot pressure measurements

Root mean square mass flow rate pulsations at different jet cross sections and frequency amplitude spectrum was observed using hot wire

Meshes for finite volume computations

- Smooth adiabatic no-slip nozzle walls
- Inlet with uniform flow in the contours, Tu=1% (outer contour) and 10% (inner contour; decays quickly within the nozzle)

Flowfields obtained in computations

RANS computation results: pressure profiles

0,6

0,5

0,4

-1.5

section 6

1,5 x/Ra 2,0

- boundary layers in outer contour are too thin in the computation
- wake diffusion behind the central body is underpredicted
- outer mixing layer growth rate is captured well

DES computation results: mass flow rate spectra

1e-05

10 000

• spectra in shear layer are predicted better than along the centerline

Nozzle test case: mesh and first computations

Inner surface of nozzle (medium mesh)

Nozzle tip

New fine DDES mesh for wall functions

- instability at the origin of the shear layer
- problem is independent of Mach number
- DG monotonization is now considered

Conclusions

- DG approach up to K=5 have implemented in TsAGI's CFD code successfully;
- To achieve enstrophy error lower than 20% in the Taylor—Green vortex problem, WENO class A scheme requires at least twice more time than high order DG.
 This difference becomes larger as the required accuracy grows;
- In the computations on a cluster of up to 4000 cores, the speed of the program
 is increased by more than 1.8 times with each doubling of core number. Use of
 a biggest number of cores requires a multilevel parallelization involving
 OpenMP;
- Second order FV RANS and DDES calculations for nozzle test case performed.
 For high-order DG calculations of nozzle limiting procedure is required;

